
YORK:

Swinegate Court East
Swinegate
York
YO1 8AJ

TEL:

01904 313969

https://www.isotoma.com



1

System Architecture

Sofia Curriculum Mapping Tool

Document revision summary

Revi
sion

Date Summary Initials

1.0 May 2018 Initial version DW

2.0 Jun 2021 Review SR

2.1 Aug 2023 Review and Update SR

2.2 Apr 2024 Review and Update AP

1 Introduction

1.1 Status
This software is under continuous development, so the actual architecture is, as always,
something of a moving target. This document describes current system and software
architecture, and associated security analysis.

1.2 Scope of this document
This is the overall architecture document for the web application environment for the Sofia
curriculum mapping tool.

The web application has a dependency on the configured authentication system for the
institution – i.e. the institution’s own single sign-on provider. Such a system is not within the
scope of this document, although its communication with the web application is outlined
here.

This document has three main parts, each with differing goals: the software application – its
architecture and integration capabilities; the architecture of the system used to deliver the
application; and the security of the application as a whole.

1.3 Audience
This document is intended for:

1. System implementers and maintainers
2. Operators and administrators who will be working with the system

© Isotoma Limited 2023



2

3. Architects and designers who will be interacting with the system
4. Project managers who need to understand the work package breakdown for

implementation
5. Security auditors and reviewers

1.4 Related documents
For further information on specific functionality see:

● Sofia APIs document describing REST APIs supporting application integration
● Sofia Exchange Format document describing tabular format for bulk import/export

of curriculum data

© Isotoma Limited 2023



3

2 Application

2.1 Overview

2.1.1 Purpose
The purpose of Sofia is to provide both students and staff with consistent, up-to-date and
accurate views of their curriculum. Students can interact with the curriculum relevant to
them, and staff can browse and make changes to current and past versions, as well as
preparing future versions. Where required, users – both students and staff – can have
access to multiple curriculums within their institution.

2.1.2 Curriculum versions and rollover
Each curriculum may have multiple versions, usually named after the academic year in
which they commence. As a shorthand, the “upcoming” version is the most recent version in
the system, usually for use in a future academic year and not available to students, and the
“latest” version is the next most recent version, usually the current academic year and in use
by students.

When an upcoming version is ready for student use or publication, the version and its
resources are cloned to make a new upcoming version through a “rollover” process, and the
former upcoming version becomes the current version. For a newly created or imported
curriculum, there will be an initial staff-only phase to prepare this upcoming version for
publication, during which time there will be no current version.

2.1.3 Institutions, sites, programmes and curriculums
The system provides multi-tenancy, separated at the site, i.e. hostname level. Each site is
grouped into an institution. As such, “tenant” and “site” can be used interchangeably.

Multi-tenancy allows each tenant to have their own data, users, and configuration. Each site
may present a different brand or visual identity (colours, fonts, logos) and navigation may be
offered between sites within the same institution.

Each site may contain a hierarchy of one or more “programmes” being the usual term for a
set of versions of the same curriculum, identified by pathname within the site. This hierarchy
may also be used to navigate programmes by department or subject, for example. Within a
programme, curriculum versions are identified by a four digit number, usually a year.

2.1.4 Curriculum items, revisions and metadata
Each curriculum takes the form of a tree or hierarchy of items, usually with a set of “year”
items at the root, representing years of study within a given curriculum. Within the tree there
may be “folder” items for grouping, “atom” items representing knowledge or skills, items for
taught units, events, assessments and learning outcomes. Each item has its own metadata
tags, connections to other items, links and resources. Additionally, curriculum events and
assessments may be scheduled in terms of week numbers, days and times.

© Isotoma Limited 2023



4

Each curriculum version has its own metadata schema describing the meaning and
relationship with external standards of tags applied in that version. Each set of changes
made to a curriculum version’s items or metadata schema creates a new revision of that
curriculum version and a full revision history is available back to its initial creation. Any two
revisions may be compared to identify changes made between any two points in time.

2.1.5 Users and permission levels
Each user is linked to exactly one institution, and can only ever access sites within that
institution, regardless of permission level. Sufficiently privileged users within a site can view
and manage which sites users have access to and their associated permission level on that
site:

● reader: can view programmes and curriculums and can leave feedback.
● student: can additionally leave feedback and add personal notes and attachments to

curriculum items – uniquely, students also have defined “steps” that present them a
curriculum built from study years of teaching they will receive from the latest version
of the curriculum at that time.

● admin: can additionally view staff-only links/resources, metadata schema and activity
(revision history).

● editor: can additionally make revisions to curriculum items, links/resources, event
schedules and metadata schema, and access system tools to view feedback and
manage clinical metadata.

● gatekeeper: can access additional system tools to manage institution users, site
permissions, site and programme settings.

Further, a user can be marked as a “superuser” granting them gatekeeper access to all sites
within their institution.

2.1.6 Key use cases
There are a number of key use cases that demonstrate some core functionality of the
system, or make use of features that exercise specific parts of the architecture, or are
otherwise interesting. This is not an exhaustive list:

● Student data upload: student data and programme/study/academic year “steps” are
uploaded by a gatekeeper using a system tool.

● Student browse and explore: a student logs in using Single Sign On and browses
their own personal curriculum built from their steps, or explores the curriculum
visually, filtering on metadata tags.

● Student calendar: a student views curriculum events which are occurring at a
date/time of interest and is taken to relevant resources and learning outcomes.

● Student notes: a student adds notes and/or uploads files to record against an item
within the curriculum. The application ensures these remain private.

● Student revision: a student lists learning outcomes relating to external standards,
knowledge, skills, taught units, placements or assessments, and marks off when they
have achieved those outcomes.

● Student leaves feedback: a student can leave feedback against an item within the
curriculum.

© Isotoma Limited 2023



5

● Student feedback download: an editor can download all feedback left by students
against a curriculum.

● Curriculum maintenance: minor changes are made to the latest curriculum content by
editors.

● Curriculum update and rollover: major changes are made to the upcoming curriculum
content by editors and a new latest version is published.

● Curriculum export/import: curriculum data including tags, scheduling and resource
links can be exported, edited in a spreadsheet, imported and changes applied.

● API access: external systems can read curriculum and change data, on demand, on
a schedule, or in response to webhooks triggered on update or rollover.

2.2 Software architecture

2.2.1 Authentication and account provisioning
Any access to a site, beyond viewing the login page, requires a user to be logged in. Users
can authenticate themselves to a site in one of two ways: Single Sign On (SSO) or
username and password. Sites within an institution may have entirely different domain
names, so authentication is on a per-site basis.

It is expected that almost all users will login using SSO. The only users who will be granted
access using a username and password will be:

● an account allowing gatekeeper level access for administrative purposes and in case
of SSO integration failure.

● any additional specific users required by the institution, who do not have an SSO
account, or require access to the system prior to SSO integration being configured
for the institution – for example, during the initial staff-only phase.

Any user without a password explicitly configured in Sofia can only authenticate via SSO.

Sofia accounts may be created by a gatekeeper individually or by spreadsheet upload. Any
users able to log into their institution using SSO, but not having a corresponding user
account in Sofia, may have a user account created on demand based on SSO user and
group data, or not be permitted to login to Sofia, depending on SSO configuration.

For users authenticating with SSO, the process is such that the user’s password is submitted
by the user directly to the SSO provider and is never submitted to Sofia.

2.2.2 Provisions for multi-tenancy
The system uses multi-tenancy, with all institutions using shared infrastructure. Data is
stored in a single database instance, and a shared database schema. This provides a
simple, flat architecture, but pushes responsibility onto the application code to ensure it
partitions tenant and institution data appropriately.

Steps are taken within the application code to ensure that this filtering always happens, and
that only records relating to the current tenant are retrieved. In particular, identifiers for the

© Isotoma Limited 2023



6

institution and site must be set before querying shared resources. If, due to a bug, these are
not set, the application will error rather than returning unfiltered records.

If necessary, there would be scope for altering this shared data storage to allow an institution
to use a separate database instance. This would come with some considerable operational
overhead – both for running the additional instance, and the additional complexity of running
database schema changes across multiple instances.

Similarly, the search and cache instances are shared between all tenants. Future
development work would allow each curriculum to have a customised search, allowing for
domain-specific synonyms.

File storage is divided to use a separate AWS S3 “bucket” for each tenant.

2.2.3 Underlying components
Sofia is delivered as a web application. It is built using the following core components:

● Ubuntu 20.04 LTS
● Python 3.10
● Django 3.2 LTS
● Node.js 18 LTS
● PostgreSQL 12.12
● Redis 7.0
● Elasticsearch 2.3

The software is written using Python with JavaScript, TypeScript, HTML and SCSS for the
user interface. Node.js is used to bundle the user interface source code into static
browser-executable JavaScript, HTML and CSS files.

The user interface does much of the “heavy lifting” of handling the curriculum for display, and
packaging of edits to the curriculum.

Caching and task queues are provided by Redis, and free text search is provided by
Elasticsearch.

© Isotoma Limited 2023



7

2.2.4 Use of user data
User data is stored in the database, as are student notes and feedback. This data is not
stored in the Redis cache or Elasticsearch.

File attachments and user upload spreadsheets are stored in file storage. Celcat staff and
student IDs are cached for 24 hours, but timetable data is not.

Any users with permission to download user feedback will receive a spreadsheet of
feedback left by users, along with the details of that user (email, name and username).

Any gatekeeper users have access to view the list of users, and are able to make changes.

The data stored for a user are given below:

© Isotoma Limited 2023



8

2.2.5 Data model
Presented below is a schematic showing the different persistent data types handled by the
application and stored in the database and in file storage:

2.3 Integrations

2.3.1 Single Sign On
The system can integrate with one SSO provider for each institution. It is expected that the
number of supported SSO systems will grow to support the pre-existing SSO providers of
newly added institutions. The following lists the status of some SSO systems:

● SAML 2.0: supported using redirect to IdP with POST to SP (may require
customisation depending on system and configuration employed by institution)

● Active Directory and Azure AD: supported using SAML 2.0
● OAuth 2.0: expected to be supported in the future (specifically Google’s OpenID

Connect implementation)

© Isotoma Limited 2023



9

At the point of login, user information in Sofia is updated from user information from the
Single Sign On provider.

2.3.2 Linking and Embedding
Deep linking is supported so that user unauthenticated users accessing the URL of a
specific programme/curriculum/item will be returned to that URL after authentication
(whether by SSO or by username/password).

Framing is supported to allow users logged in to another system to view embedded Sofia
content, authenticated by SSO or by username/password. For security reasons, the
authentication process takes place in a popup window.

Framing is supported to allow users to view content from other systems embedded in Sofia,
including content from systems authenticated by SSO.

2.3.3 Exchange Format
Sofia has functionality for bulk import/export of curriculum and resource link data in a
human-readable tabular format, providing “round-trip” editing of data either in an external
system or manually using a spreadsheet.

Import data may be used to populate an empty curriculum or to make incremental changes
to an existing curriculum. Only the items which are to be changed need to be present in the
import data.

The format can be created manually, by an automated process, or from a Sofia export.

For further information see the Sofia Exchange Format document.

2.3.4 REST API
Sofia offers REST APIs supporting integration with third-party applications. Authentication is
conducted using OAuth 2.0, and offers access to endpoints including:

● Nodes - snapshot of curriculum data at a specific revision, as a list of nodes
● Tree - snapshot of curriculum data at a specific revision, as a tree of nodes
● Compare - describe changes or differences between two specific revisions
● Metadata - snapshot of metadata configuration at a specific revision and current

connection configuration

Further, webhooks may be configured to inform third-party systems when new revisions and
versions are created in Sofia. Webook calls are signed using a HMAC in the same way as in
the Stripe API.

For further information see the Sofia APIs document.

2.3.5 Assessment Management Systems
The Compare and Metadata REST APIs are specifically intended for use with an AMS.
These allow an AMS to periodically synchronise with any changes made to items and
metadata tags and schema in Sofia.

© Isotoma Limited 2023



10

Requests to this endpoint can ask for data relating to known revisions of a curriculum –
identified by a hash – or using special values. These can be used to request changes
starting from an empty curriculum (“sentinel”), or up to the most recent revision of the “latest”
or “upcoming” versions of the curriculum.

Specifically, the changes endpoint returns a list of individual items, each indicating an added,
modified or removed item between the two requested revisions, along with a description of
the changes to each field for the item in question.

Sofia has been customised to display user interface components allowing users to interact
with the Practique AMS. This customisation could be extended to support other AMS’s
where appropriate.

2.3.6 Timetabling systems
Each curriculum version in Sofia may be configured to connect to one or more external
timetables covering the academic year or other period the curriculum version is being
delivered. Events and assessments in that curriculum may then be connected to events in
the external system by ID, allowing them to be shown on Sofia on a week by week calendar,
a “timeline” year planner, and a home page summary, in the same way as events using
Sofia’s built in scheduling mechanism.

This approach has been used to build Celcat integration. Staff and students using Sofia see
a calendar with their personal Celcat timetable, enriched with data, resources, notes and
learning outcomes for each event. When browsing a curriculum staff and students see when
and where they are timetabled to teach or study the events they are viewing. Staff may
additionally see details of all events in the timetable relating to events in the curriculum.

This approach may be extended to support other timetabling or placement systems where
appropriate.

2.3.7 Future integrations
There is potential to extend the REST API to cover other data within the system, supported
by OpenAPI (Swagger) documentation, allowing access to a more comprehensive set of
data types or views of that data suited to specific requirements.

The classes of systems noted below are additional candidates for integration with Sofia. The
REST API may be able to provide useful integrations for some such systems, but others may
require customisation, depending on the existing systems within an institution.

● Student Information System
● Virtual Learning Environment
● Curriculum Governance
● Learning Portfolio
● Communications Platform

© Isotoma Limited 2023



11

3 System architecture

3.1 Amazon Web Services overview
The architecture used relies on various parts of Amazon Web Services to deliver a scalable
and durable system. As a result of its size and widespread usage, AWS not only provides a
wide range of services for delivering a system such as Sofia, but also a set of practices –
both officially encouraged, and suggested by the wider community – to make best use of
these services.

Where appropriate, relevant levels of service offered by AWS will be stated here without
further evidence. These are widely published by AWS themselves, but should not be taken
directly as an SLA regarding Sofia.

While AWS itself is a global, US-owned company, all production data stays within the
“London” region. This decision was taken speculatively to greatly reduce the likelihood of
future legal or compliance issues regarding location of data storage.

3.2 Principles
The following design principles apply to this architecture, and should be borne in mind for all
design decisions. These are considered current best practices in the development of
systems of this type.

3.2.1 Development methodology
The use of frequent, small releases as a key feature of the development and delivery
approach. This maximises the value of development work, by allowing features to generate
value as soon as possible. It also minimises risk, by reducing the scale and impact of each
individual release.

The use of unit tests wherever possible. This reduces the amount of manual testing required,
shortening release lag and enabling frequent releases.

The use of separate pull-requests per ticket, and peer code-review before changes are
merged into the main branch.

3.2.2 Deployment methodology
The use of deployment automation wherever possible. This minimises the cost of creating
new environments and changing existing environments, reducing friction. This also
minimises the risk of human error and reduces the cost of ongoing support.

3.2.3 Data consistency
Key information is maintained within two systems for a given institution, namely the Single
Sign On provider, and in Sofia. Both of these must store information sufficient to identify a
user. Sofia treats the SSO provider as the source of truth for information regarding users.

© Isotoma Limited 2023



12

3.2.4 Fault tolerance
Audit logging will be asynchronous to ensure audit requirements do not impact delivery.

Clustering will be used as appropriate to make individual service components resilient in the
face of hardware or software failure.

Alerting interfaces will be provided to indicate fault situations that require manual
intervention.

3.3 System overview

3.3.1 Key operations use cases
The use cases below are necessary for the ongoing support of the site, and are both the
most frequently performed at present, and will need to be conducted throughout the life of
the system.

3.3.1.1 Releasing a new version of the software
Supporting safe releases of new software versions is critical. Deployments are conducted as
follows:

● The lead developer tags a specific revision of the code in the repository.
● Using GitHub actions, a Docker image is built and pushed to a private repository in

the GitHub Container Registry
○ Specifically, by running a series of commands to install software

dependencies and the custom application code
○ Once created, the image is named according to the tag it was created from.

● The created image is then manually referenced in the configuration for the stage
environment and deployed using FluxCD by pushing this change to a configuration
GitHub repository. The image is automatically deployed to stage using a rolling
update.

● Testing can now take place on the stage environment.
● Once completed, the procedure can be repeated on the production environment

using the same image that was deployed to stage, guaranteeing that the code and
dependencies that were tested on stage are indeed what is promoted to production.

While this covers the manual steps taken during the release of a new version of software,
the exact process of a deployment – while automated – is of relevance, and discussed in the
section below dedicated to auto scaling groups.

3.3.1.2 Making infrastructure changes
Because all infrastructure is software-defined, infrastructure changes are managed entirely
using AWS’s CloudFormation service and Cloud Development Kit (CDK) libraries. Changes
are made to the CDK code and configuration files, reviewed, and then deployed through
CodePipeline invoking CloudFormation with the new configuration.

CloudFormation also uses the concept of “change sets”. Before any changes are applied to
the infrastructure, a change set can be created. CloudFormation creates a change set by

© Isotoma Limited 2023



13

comparing the existing infrastructure with the new configuration, and creates the list of steps
it will undertake to achieve the change. Once reviewed, these steps can then be executed.

3.4 Environments
The scope of this system comprises a number of different environments, each with a
different purpose.

3.4.1 Development environment
Developers and testers use environments under their control on a local machine. Initial
development and testing takes place with a limited part of the stack that allows for easy
management while exhibiting largely the same behaviour as the production system.

The primary method for mimicking the production system uses Docker and Docker Compose
to both run the application and a single worker, and provides the storage services (database,
cache, search and file storage), HTTPS termination and test SSO providers.

3.4.1.1 Site selection
Developers can control which site they view by controlling the Host: header transmitted by
their web browser. This is done by mapping tenant domains to subdomains of localhost.

3.4.1.2 Differences from production environment
This environment is straightforward to debug using standard debugging tools, and allows for
a rapid development process, and provides sufficient backing services for testing almost all
of the application code. There are a few ways it does differ, however:

● Threading model running the web server
● Implementation of database, cache, search and file storage
● Implementation of SSO providers

These differences must be kept in mind during development, but – with the possible
exception of SSO providers – generally present a good imitation of the functionality of the
production environment.

3.4.2 Environments

3.4.2.1 Stage
The “stage” (currently known as “test”) environment serves as a platform for integration
testing, as well as allowing user acceptance testing. Releases are made manually using the
predefined release process.

This environment:

1. Contains no real personal information
2. Can be integrated with dummy SSO providers if needed
3. Has no privileged access to any confidential systems or data

© Isotoma Limited 2023



14

This environment is therefore considered uncontrolled from a security perspective.

3.4.2.2 Production
The “production” environment has real production data. Only authorised system
administrators can have access to the data within this environment.

3.4.3 User acceptance testing
Further to the environments listed, user acceptance testing (UAT) can be conducted within
specific tenants (sites/institutions) across both environments.

● Specific UAT tenants on the production environment – allowing safe user testing of
production code, for example enabling an optional feature.

● Specific UAT tenants on the stage environment – allowing safe user testing of stage
code, for example a newly developed feature.

● One UAT tenant per style theme on the stage environment – allowing user visibility of
any changes to a specific style theme before release to production.

3.4.4 TLS certificates and domains
Certificates must be created to allow for appropriate domain names. These certificates are
created and managed using AWS Certificate Manager and installed in the CloudFront
delivery systems, with no access to private keys.

3.5 Data storage
How the data storage links with other parts of the system is described in more detail below.
Given here are some more general operational and compliance concerns regarding data
storage.

3.5.1 Storage locations
As noted above, all production data is stored in the London region, so remains within the UK.
The current stage environment (known as “test”) also uses the London region, and does not
contain real user data beyond that required for login for UAT purposes.

3.5.2 Encryption
Both the database and file storage are configured to encrypt data at rest – both in the
primary store, any live replicas, and any backups – using keys managed by AWS.

3.5.3 Backups
Only for parts of the system where lost data would be unrecoverable are provisions for
backups taken. Further, it should be noted that these are to be used in the case of a system
failure, and are not to be considered an archive.

© Isotoma Limited 2023



15

3.5.3.1 Database
This stores the vast majority of data within the system. Daily snapshots of the instance are
taken using the automated snapshots from Amazon Relational Database Service (RDS), and
stored for 31 days. These offer point-in-time restore.

These snapshots are stored by AWS using their S3 object storage service, which is
discussed below.

3.5.3.2 File storage
The S3 buckets used for file storage use object versioning so that any items that might be
inadvertently deleted are only logically deleted. The deployment role also does not have
permissions to delete buckets.

S3 is – by design – an incredibly durable system, with each object replicated within a region
across multiple devices in at least three availability zones. AWS describes it as being
“designed to provide 99.999999999% durability of objects over a given year”.

3.6 Recovery
In the event that the system suffers some catastrophic failure, a combination of a database
snapshot and the required S3 buckets would be sufficient to restore the system. As the CDK
code and CloudFormation templates describe the entire infrastructure, if it were necessary
the whole system could be recreated.

A more plausible event requiring recovery would be that a single component of the system
has failed. The architecture makes effort to make this unlikely – for example the use of a
database cluster with a replica – so it would in fact require multiple replicas of a component
to fail. In this case, the database could be recreated using the latest point-in-time backup
available.

3.7 Amazon Web Service (AWS) configuration

3.7.1 Architecture overview

© Isotoma Limited 2023



16

The above diagram gives a high-level overview of the components for an environment and
how they link together.

3.7.2 Namespaces
The environments are partitioned from each other by being created in separate Kubernetes
namespaces.

The following accounts exist and are used as noted below:

Namespace Purpose

production Production

test Stage

3.7.3 High Availability
Refer to the diagram overleaf for a component level view of the architecture.

All services are configured in their High Availability configuration, with the exceptions of the
cache and the search. How this works in practice varies from service to service, although the
core concept is the partitioning of AWS physical data centres into Availability Zones (AZs).

Component Analysis Provision for HA

CloudFront Key service Designed by AWS to provide at least 99.9%
uptime during any month, and implemented
as a very large network of edge servers.

Elastic Load Balancer Key service Has a “leg” in each of the two application
subnets, each in a different AZ.

Kubernetes cluster
servers

Key service Always at least 2 instances, balanced
between AZs.

Application
containers

Key service Always at least 2 containers, balanced
between cluster servers

Worker containers Key service, used
asynchronously

Always at least 1 container; recreated should
it become unavailable.

NAT Gateway Key service One gateway in each AZ.

RDS instance Key service Has a primary and a replica in different AZs,
with failover managed automatically by RDS.
Such multi-AZ instances are designed by
AWS to achieve at least 99.95% uptime
during any month.

S3 Key service By design, a highly available service, using
eventual consistency amongst a large number
of nodes.

ElastiCache Temporary loss
tolerated

Will be reprovisioned and repopulated
automatically should it suffer a failure.

© Isotoma Limited 2023



17

Elasticsearch Temporary loss
tolerated

Will be reprovisioned and repopulated
automatically should it suffer a failure.

3.7.4 Identity and Access Management (IAM)

3.7.4.1 Key pairs and Server Access
No conventional SSH access is possible to the cluster instances and no key pairs are
deployed. Access is instead via AWS’s Session Manager, meaning no instances have an
exposed SSH port.

3.7.4.2 Roles and Container Profiles
The following roles are created within IAM:

Role Access Summary

ApplicationRole, per environment Writing CloudWatch metrics and logs
Elasticsearch full access
S3 access for managing media

Deployment Gives deployment tool full access

CloudTrailRole Allows CloudTrail to push logs

DatadogAWSIntegrationRole Read access to all services, limited to
actions relevant for monitoring

For the application role, an IAM role is created for each environment and only the containers
for this environment can use this role, granting access to the relevant resources for that
environment.

3.7.5 Virtual Private Cloud (VPC)

3.7.5.1 Allocation of ranges to regions
The address range for each environment is 10.0.0.0/20. This is represented by a VPC within
each account using this address range.

3.7.5.2 Subnets
Within the VPC, 7 subnets are created, 2 in each of two availability zones, plus two in just
the primary availability zone as follows:

Name AZ A Subnet AZ B Subnet

application (also used for workers) 10.0.1.0/25 10.0.2.0/25

load balancer 10.0.4.0/25 10.0.5.0/25

nat 10.0.6.0/25 10.0.7.0/25

© Isotoma Limited 2023



18

Having these subnets in two availability zones allows us to implement the high availability
features offered by AWS.

3.7.5.3 Routing
All subnets can route internally within the VPC (this is a default part of the AWS configuration
that cannot be changed). However subnets cannot route outside the VPC without having a
specific routing table entry.

There is a single egress point from the VPC, an internet gateway, connecting the VPC to the
Internet via the AWS firewalls. Egress is all via the NAT gateways.

Note that no external routes exist to either of the application subnets. The only access to
these subnets is via other subnets. The load balancer, control and NAT subnets are all
public.

3.7.6 Simple Storage Service (S3)
Within each environment an S3 bucket is created for each site. This bucket is used to store
media (any files uploaded by users, and any generated spreadsheets). These buckets are all
set to be private. They also have versioning enabled – this is used to ensure that any files
that are deleted are only logically deleted and can therefore be recovered if needed.

There is one public bucket, which is used to display the fallback error page should the site
ever be inaccessible.

3.7.7 Relational Database Service (RDS)
A database subnet group is created spanning both application subnets.

A single Aurora PostgreSQL cluster is created within this subnet group, and within this a
database (named “curricle”) is created, with separate writer and reader instances to
distribute workload.

This database has HA enabled and should transparently fail over between primary and
replica instances. Further, the primary and the replica are each accessed through a separate
subnet within the subnet group – specifically, the primary is within the primary application
subnet and the replica is within the backup application subnet.

The data the instance stores is encrypted at rest, using keys managed by AWS. Further, 31
days of daily snapshots are retained, and each of these is also encrypted.

3.7.8 ElastiCache
A cache subnet group is created spanning both application subnets. Currently, there is only
one cache instance created, made available to both subnets.

© Isotoma Limited 2023



19

3.7.9 Amazon Machine Images
All EC2 servers are created from an AMI that is provided by AWS for use as Kubernetes
servers with AWS’s Elastic Kubernetes Service (EKS). The application containers are
deployed onto these servers and run with Docker.

3.7.10 Elastic Load Balancers
A single load balancer 'balancer' is created in a High Availability configuration. This provides
HTTP access to nodes within the application cluster only.

When containers or servers in the application cluster are terminated, connection draining is
handled by the load balancer.

3.7.11 Auto Scaling Groups and Launch Configurations
All EC2 servers are created and managed by auto scaling groups and launch configurations.
These allow AWS to transparently and automatically scale, rotate and manage instances
between designated availability zones. One ASG of Kubernetes servers is created in each of
the two AZs.

3.7.12 CloudFront
CloudFront is used to cache static assets, and to provide dedicated high-speed backhaul to
the application origin containers.

There is a separate CloudFront distribution per site, with an TLS certificate installed into
CloudFront for the public URL of the site.

Each distribution has two origins. A default origin that maps to the load balancer, and a
/status origin that maps to the status bucket.

Further, the default origin has different behaviour for /static that enables caching for static
assets from the application (e.g. JavaScript and CSS assets).

The CloudFront distribution obeys caching headers provided by the application. Middleware
within Django explicitly turns off caching for all dynamic pages.

This ensures private data is never leaked from the cache, while still allowing acceleration of
static content.

3.7.13 Route 53
Only the internal sofiasrv.net domain is hosted on Route 53 as part of this design. Other
DNS entries, for public parts of the service, may be hosted anywhere.

Records are created in Route 53 as follows:

Record Environment

sofiasrv.net production

© Isotoma Limited 2023



20

prod.sofiasrv.net production

pre.sofiasrv.net pre-production (stage)

The sofiasrv.net domain itself has been registered with GANDI and the WHOIS nameserver
and root server entries point to the designated AWS nameservers.

Each production tenant is given a subdomain of prod.sofiasrv.net, and this can be used as a
target for the public domain.

3.7.14 Architecture Management
The configuration for all of the above components is managed using CDK and
CloudFormation. This allows multiple environments to be provisioned easily, and with
confidence that they are configured identically, safe for explicit changes between
environments.

3.8 Software execution environment
The backend application code itself executes in Docker containers running either
“application” or “worker” commands. On these containers, the execution environment for the
software comprises:

1. Ubuntu LTS base provided and patched by Ubuntu
2. Other Ubuntu packages needed for operation
3. Packages necessary to set up the Python Virtual Environment
4. Open Source Python packages produced by third parties

3.8.1 Application software
The software and its supporting infrastructure, build, installation and deployment scripts are
all kept within git repositories at GitHub.

Before release to production environments this software is tagged within git. It is then built
into a Docker image using GitHub Actions and pushed to GHCR.

3.8.2 JavaScript and CSS bundling
The frontend application source code is bundled into browser-executable static JavaScript
and CSS files using Webpack 5 during Docker image building. These files are initially served
from the container filesystem by Django and then cached by CloudFront.

3.8.3 The Python Virtual Environment
The Python Virtual Environment is constructed using three Ubuntu packages:

● python3.10
● python3.10-dev
● python3.10-venv

© Isotoma Limited 2023



21

The virtual environment provides a constrained environment where dependencies for Python
software may only be found from within this virtual environment. This ensures only Python
packages intentionally installed into the virtual environment are used.

The virtual environment is populated with packages using the requirements.txt file, which is
contained within the repository.

3.8.4 Docker image construction
Docker images are built using an Ubuntu LTS release. These images are automatically
patched by Ubuntu. Regular rebuilding of Docker images and redeploying tasks therefore
ensures that all recommended security patches are applied.

3.9 Availability

3.9.1 Target
The architecture itself has been designed with the goal of maximising availability, with
redundancy of any components critical for users and staff to access the system.

However, further provisions have been made to understand the resilience, and to monitor the
ongoing performance of the system.

3.9.2 Operational dependencies
The SSO provider in use for an institution will be used by almost all users to gain access to
the system. As such, Sofia will be inaccessible to users should the SSO provider be
unavailable. Users that authenticate with username and password will still be able to log in.

Timetable data is retrieved on demand from Celcat with limited caching in the Sofia
application. As such, timetable data will not be presented should Celcat be unavailable. The
rest of the application will continue to operate and will periodically retry the connection to
Celcat.

3.9.3 Monitoring
Wide ranging metrics are recorded from all components of the system to allow systems
administrators vision over the health and performance of the system.

These are recorded by all parts of the AWS infrastructure using CloudWatch and stored in
Datadog. Additional measurements not supported by CloudWatch are made using a
Datadog agent running on each cluster instance. Datadog retains all of these metrics for 15
months.

Datadog is also used to provide a dashboard for each environment, displaying key metrics.

3.9.4 Logging
Logs are shipped to Datadog using a Datadog agent running on each cluster instance, and
retained for 31 days, providing more powerful log analysis for any urgent investigation.

© Isotoma Limited 2023



22

An augmented form of logging is used to handle any errors within server-side application
code. Sentry’s client captures relevant data regarding the error – appropriately cleaning
sensitive data such as passwords – and records this in Sentry, retained for 90 days.

3.9.5 Alerting
Alerts are generated both from monitoring, should particular metrics fall outside specified
ranges, and from any errors reported to Sentry.

3.9.6 Scaling
As noted throughout the description of the architecture, the cluster instances make use of
auto scaling groups, serving the dual purpose of ensuring instances are replaced should
they become unhealthy, and allowing the system to increase its capacity when under load.
Kubernetes handles scaling of containers based on load, and triggers scale up of the
instances if more capacity is needed.

As the infrastructure is shared between tenants, the exact number of instances required will
vary depending on the number of tenants, and the activity of users. Scaling will adapt the
production environment to accommodate load increases.

3.9.7 Load
Some tests to empirically measure the behaviour of the system under increased load were
conducted. This revealed that when under simulated expected heavy loads, the application
instances bore the brunt of the extra work, thereby demonstrating that the system would be
able to handle projected future workloads as anticipated, and that extra application instances
could be provisioned to increase capacity.

Additionally, due to the use of caches to retain the structure of the curriculum, and the
architecture of the application more generally, the workload when the curriculum visible to
students is not being changed is remarkably light, even when many students are navigating
the site. This is because the browser loads the curriculum and associated data as the
student logs in, then makes no further requests while the student is navigating the site.

While these tests indicated that the system would behave well under projected workloads,
these were simulated based on expected load. The monitoring described above will provide
insight into the achieved performance of the system as additional institutions are added.
With a view even further ahead, monitoring will be used to inform decisions regarding any
future architectural alterations that may be required.

3.9.8 Maintenance and upgrades

3.9.8.1 Maintenance windows for AWS hosted services
The hosted AWS data storage servers have been configured to allow a weekly maintenance
between 2-3 am UTC every Tuesday. During this window, AWS will apply any required
updates to the underlying operating system and the service running.

© Isotoma Limited 2023



23

Further, for services configured to have a primary with a replica, the update is first applied to
the replica, which is then promoted to become the new primary. The old primary is then
updated and becomes the new replica.

It is not anticipated that these will impact the delivery of the system.

3.9.8.2 Software and infrastructure upgrades
Agreement for any changes that may impact the use of the system are agreed before being
enacted. Further, all software updates to the production environment are currently
communicated and agreed prior to deployment.

4 Security

4.1 Design features

4.1.1 Partitioning of environments
Environments are separated by the use of Kubernetes namespaces, and by use of separate
AWS IAM roles used between the environments to ensure no privilege escalation between
environments or accidental promotion of software to the wrong environment.

4.1.2 Partitioning of components
Each component is partitioned as much as is possible using AWS features. Access to each
component can then be individually controlled.

4.1.3 Use of encryption
TLS 1.2 is used for connections from browsers to CloudFront, and any attempts to connect
using plain HTTP are redirected.

No encryption is used over the network between the internal components of the system.
AWS describes the VPC as being “logically isolated”, and it is treated as a private network.

4.1.4 Logging
All system logs from EC2 machines are sent to CloudWatch Logs, where they are accessible
to privileged accounts only. This helps isolate systems logs in the case of suspicious activity.

Operational protocols for the identification of suspicious activity have yet to be defined.

4.1.5 User accounts
In normal operation no access to any EC2 nodes is required for any maintenance or
operational purpose. Any access to a user account is therefore a potential compromise and
can be alerted appropriately.

© Isotoma Limited 2023



24

4.2 Penetration testing
Penetration tests will be conducted following every major release, and results of the latest
test will be available on request.

These tests will be run on the stage environment, running the same code and with the same
architecture as the production environment, but will not impact the service for production
users, or risk altering production data.

4.3 Confidential data
The system uses Amazon RDS as a primary data store, in which user data is stored at rest.
This data includes the first name, last name, email address and hashed password of any
user who does not authenticate using SSO.

The “intake” spreadsheet uploads used to create and update student user records and
curriculum steps are retained in the site-specific S3 bucket for audit purposes, but these files
are only available to operations staff, not through the application.

4.4 Relevant use cases

Use Case Description

Student data upload Gatekeepers access the site over TLS encrypted
connections only. They log in using SSO. Spreadsheet
uploads are processed and stored securely.

Student browse and explore Students access the site over TLS encrypted connections
only. They log in using SSO. They browse the curriculums
they have access to.

Student calendar Students see calendar data they have access to, and
may create personal events only visible to themselves.

Student notes Students make notes and upload files which are stored
securely and only visible to themselves.

Student revision Students may mark learning outcomes as achieved, only
visible to themselves.

Student leaves feedback Students submit feedback for later review by editors.

Student feedback download Editors view and download feedback including data on
the student who submitted the feedback.

Curriculum maintenance Editors make changes to the curriculum and
upload/replace/delete resources. A revision history is
retained of curriculum changes.

Curriculum update and
rollover

Gatekeepers initiate the ‘rollover’ process, cloning a
curriculum and its resources and making the previous
“upcoming” curriculum available to students.

© Isotoma Limited 2023



25

Curriculum import/export Import and export functionality is available to operators
with SSH access to the control server or in the front end
to users with specific permission.

4.5 System threat model

4.5.1 Entry points

4.5.1.1 AWS Control Panel
Using the AWS control panel every aspect of the system can be amended or controlled. In
particular a database snapshot can be taken and downloaded. Access to the Control Panel
is secured using strong passwords and two-factor authentication.

4.5.1.2 AWS API
The API has the same features as the control panel, although different authentication keys
are used.

4.5.1.3 EKS IAM Roles for Service Accounts
EKS injects configuration into containers running within the cluster to grant access to AWS
resources. The permissions granted include access to some privileged information,
particularly the RDS password. If this service were breached, this information could be
obtained.

4.5.1.4 Elastic Load Balancer
The Elastic Load Balancer provides the only Internet-accessible part of the service in
production, on port 80. The ELB has network access to the application servers over port 80.
Security groups are used to restrict access, limited to the IPs used by CloudFront.

4.5.1.5 CloudFront
CloudFront hosts TLS certificates for the public domains, and holds cached public assets
(CSS, JavaScript, icons, fonts, logos).

4.5.1.6 The web application
The web application and its API could include any of a number of vulnerabilities – mitigations
for these are discussed later.4.5.1.8 AWS Infrastructure

AWS itself provides infrastructure such as network

connectivity and hypervisors. A breach of the AWS hosting environment would provide
access to any or perhaps all of the application.

© Isotoma Limited 2023



26

4.5.2 Assets

4.5.2.1 Scope
The scope of confidential information here is limited to personally identifiable information
such as:

● Name
● Email Address
● Password (unless user only authenticates with SSO)

Further, the contents of the curriculum should be considered confidential, as well as student
feedback, notes and file attachments.

4.5.2.2 System logs
System logs may contain confidential information, depending on the nature of errors,
backtraces etc.

4.5.2.3 Backups
Database backups are stored by the RDS service. These will contain confidential personal
information.

4.5.2.4 Relational database service (RDS)
RDS hosts all confidential information.

4.5.2.5 ElastiCache
The cache stores curriculum data, but not user data.

The cache will contain confidential information in RAM only. If the RAM of the cache system
were accessed then this could be breached.

4.5.3 Trust levels

4.5.3.1 AWS staff
Amazon staff are not specifically granted any access as part of this system. Nevertheless
they have potential access to any part of the system.

4.5.3.2 Operations
Operations staff with AWS access have complete control over the system and its functions.

4.5.3.3 Developers
Developers are able to commit code. The lead developer is able to merge code, build and
deploy AMIs.

© Isotoma Limited 2023



27

4.5.3.4 Gatekeepers
These users have access to system tools – specifically the list of users – and therefore
access to personal data.

4.5.3.4 Editors
Editors have some privileged access, in particular can download feedback which includes
personal data.

4.5.3.5 Students
Students have access only to their curriculums, and their own notes and personal files they
have uploaded.

4.5.4 Risks
The list of risks below is taken from the OWASP 2021 Top 10 most critical web application
security risks report. This has been augmented with any other risks identified as being
relevant to the architecture or software.

Risk Description Assessment Rank

OWASP 1: Broken
access control

Applications need to perform
access checks on the server
side as well as client side.

A common problem with
web applications.
Mitigated with the use of
permissions and
validation support within
Django.

MEDIUM

OWASP 2:
Cryptographic
failures

Sensitive data should be
protected with encryption,
and special precautions
taken when interacting with
the browser.

Personal data is
transferred between
several components.

MEDIUM

OWASP 3: Injection Injection flaws such as SQL,
XSS, OS and LDAP
injection.

All RDBMS access is
mediated by an ORM. No
OS level commands are
executed. Web content is
entered by administrative
users or personal to the
contributor. Content is
filtered to specific tags.
Script origin is limited by
Content Security Policy.

LOW

OWASP 4: Insecure
design

Software and infrastructure
design should work to
prevent common
vulnerabilities

Design follows a common
reference design pattern.
Main risk is around
multi-tenancy being
enforced in code.

LOW

OWASP 5: Security
misconfiguration

Misconfigurations can
expose confidential data, or
allow access it should not.

Security configuration for
this system is reasonably
complex.

MEDIUM

© Isotoma Limited 2023



28

OWASP 6:
Vulnerable and
Outdated
Components

Components should be
monitored for known
vulnerabilities and upgraded
or patched.

Operating system
components maintained
by AWS. Python and
JavaScript components
may have vulnerabilities.

MEDIUM

OWASP 7:
Identification and
Authentication
Failures

Implementation errors in
authentication or session
management allow an attack
to assume another user's
identity.

Authentication and
session handling is
provided by Django, and
is well proven.

LOW

OWASP 8: Software
and Data Integrity
Failures

Vulnerable deserializers
could be exploited if an
attacker sends malicious
data.

Data submitted by
authenticated users is
deserialized on the server.
Particular risk for external
XML entities via SSO.

HIGH

OWASP 9: Security
Logging and
Monitoring Failures

Should any kind of incident
occur, failure to detect and
respond could allow the
result to be far more severe.

Reasonably diverse
system architecture to
monitor, and a few
different sources of logs.

MEDIUM

OWASP 10: Server
Side Request
Forgery

Server must not fetch a
remote resource from
unvalidated user input.

Code review to ensure
appropriate handling of
inputs prior to the server
making requests.

LOW

Cross Site Request
Forgery

A CSRF attack forces a
logged-on victim’s browser to
send a forged HTTP request,
including the victim’s session
cookie and any other
automatically included
authentication information, to
a vulnerable web application.

Anti-CSRF measures are
provided by Django, and
are well proven.

LOW

Unauthorised access
to AWS API or
Control Panel

Anyone with privileged
access to these services can
do anything.

Significant threat. Must be
mitigated with good
practice.

HIGH

AWS virtualization
breach

In theory a breach of the
virtualization environment
provides access to the RAM
of worker and application
servers.

Existential threat to AWS
business as a whole.

LOW

AWS insider An AWS employee with
access to infrastructure could
do anything.

Existential threat to AWS
business as a whole. Low
likelihood.

LOW

Unauthorised access
to system tools

Access with correct privilege
levels would allow access to
user data.

Significant threat. Should
be closely controlled and
monitored.

HIGH

Unauthorised SSH
access to servers

With correct credentials, user
could access RAM of all
worker and application
servers

Significant threat. Can be
mitigated by removing all
SSH access.

HIGH

© Isotoma Limited 2023



29

Tenancy leakage Misconfiguration or error
could allow data belonging to
one tenant to be
inappropriately mixed with
data from another and
displayed.

High impact fault. HIGH

4.5.5 Mitigation

4.5.5.1 Standard quality procedures
Many of the above risks are mitigated by the suite of standard quality techniques
implemented by the development team, including:

● Appropriate staff training

● Code review

● Automated unit testing

● Automated integration testing

● Automated system testing

● Separate QA function, qualified to industry standards

● Manual testing of high risk areas

● Use of analysis and design approaches

● Regular use of AWS’s “Trusted Advisor” tool to identify any issues

4.5.5.2 Specific mitigations for High and Medium risks

Risk Mitigation approach

OWASP 1: Broken access control 1. Code review
2. Vulnerability scanning

OWASP 2: Cryptographic failures 1. Use of encryption over public
network, and data at rest

OWASP 5: Security misconfiguration 1. Limiting manual changes to security
as part of normal course of business

2. Change control of all security
configuration

3. Automated ongoing test pack
monitoring security quality attributes

OWASP 6: Vulnerable and Outdated
Components

1. Automated patching process
2. Vulnerability monitoring and review

© Isotoma Limited 2023



30

OWASP 8: Software and Data Integrity
Failures

1. Review of all parts of the system
that deserialize data from users,
particularly XML from SSO

2. Vulnerability monitoring and review
3. Code review

OWASP 9: Security Logging and Monitoring
Failures

1. Use of anomaly detection on
relevant metrics within monitoring

2. Aggregated logging

Unauthorised access to AWS API or
Control Panel

1. Limited number of users with access
2. Control of credentials
3. Use of two-factor authentication

Unauthorised access to system tools 1. Control of credentials

Unauthorised SSH access to control server 1. Limited number of users with access
2. Limited IP addresses with access
3. Control of credentials

Tenancy leakage 1. Constraints in data access layer
2. Automated testing

© Isotoma Limited 2023


